Aide personnalisée 9 La mole

L'eau de Dakin

Mobiliser et organiser ses connaissances ; élaborer un protocole ; tracer et exploiter un graphique.

> D'après Baccalauréat Métropole spécialité, 2004 L'eau de Dakin est un antiseptique utilisé pour le lavage des plaies et des muqueuses.

ÉTIQUETTE D'UNE EAU DE DAKIN

Pour un volume V = 100 mL:

- solution concentrée d'hypochlorite de sodium, quantité correspondant à 0,500 g de chlore actif;
- permanganate de potassium 0,0010 g;
- dihydrogénophosphate de sodium dihydraté;
- eau purifiée ;

En outre, l'eau de Dakin contient des ions chlorure

L'ion permanganate de formule MnO₄ est la seule espèce colorée de l'eau de Dakin. L'objectif de cet exercice est de vérifier une partie des indications de l'étiquette.

Partie A. Concentration en ions permanganate

Afin de réaliser un dosage par étalonnage, on prépare un volume $V_0 = 500,0$ mL d'une solution S_0 de concentration en ions permanganate $C_0 = 0,010$ mol·L⁻¹.

La solution S_0 permet de préparer une gamme de solutions étalons dont on mesure l'absorbance A:

Solution	S ₁	S ₂	S ₃	S ₄	S ₅
Concentration C (mmol·L ⁻¹)	0,10	0,080	0,060	0,040	0,020
Absorbance A	0,221	0,179	0,131	0,088	0,044

- 1. Calculer la masse molaire du permanganate de potassium $KMnO_4$. Utiliser le réflexe 1
- 2. La quantité de permanganate de potassium à peser pour préparer la solution S_0 est égale à la quantité d'ions permanganate dans la solution S_0 . Déterminer la masse de permanganate de potassium à peser pour préparer la solution S_0 .
- **3. a.** À quelle longueur d'onde faut-il régler le spectrophotomètre pour réaliser ce dosage ? Justifier.
- **b.** En utilisant le cercle chromatique et le spectre d'absorption, prévoir la couleur de la solution S_0 .
- **4.** Élaborer un protocole permettant de préparer 100,0 mL de solution S_1 à partir de la solution S_0 .
- **5.** Tracer la courbe d'étalonnage A = f(C). Déterminer la relation entre l'absorbance A et la concentration C.
- **6. a.** L'absorbance de l'eau de Dakin est A=0,140. En déduire la concentration en quantité de matière $C_{\rm inc}$ d'ions permanganate dans l'eau de Dakin. Utiliser le réflexe 3
- **b.** Le fabricant indique que la concentration en ions permanganate de l'eau de Dakin est $C_{\rm com} = 6.3 \times 10^{-5} \, {\rm mol \cdot L^{-1}}$. Calculer l'écart relatif entre $C_{\rm com}$ et $C_{\rm inc}$ et l'exprimer en pourcent. Conclure.

Partie B. Degré chlorométrique de l'eau de Dakin

Lorsqu'on verse de l'acide chlorhydrique concentré dans 100 mL de solution de Dakin, il se produit la réaction d'équation :

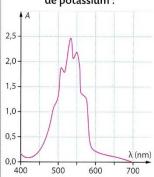
$$C\ell^{-}(aq) + C\ell O^{-}(aq) + 2H^{+}(aq) \rightarrow C\ell_{2}(g) + H_{2}O(\ell)$$

La masse de chlore actif indiqué sur l'étiquette correspond à la masse de dichlore libéré au cours de cette transformation pour 100 mL de solution.

7. Confirmer le rôle antiseptique de l'eau de Dakin.

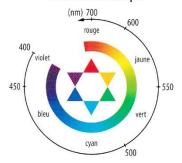
Donnée

• Masses molaires atomiques :


$$M(O) = 16.0 \text{ g} \cdot \text{mol}^{-1}$$
; $M(K) = 39.1 \text{ g} \cdot \text{mol}^{-1}$;

$$M(Mn) = 54.9 \text{ g} \cdot \text{mol}^{-1}$$
; $M(C\ell) = 35.5 \text{ g} \cdot \text{mol}^{-1}$.

• Volume molaire d'un gaz dans les conditions de l'expérience : $V_{\rm m} = 24.0 \, {\rm L \cdot mol}^{-1}$.


 Spectre d'absorption d'une solution de permanganate de potassium : Écart relatif r :

$$r = \frac{\left| C_{\text{mesurée}} - C_{\text{référence}} \right|}{C_{\text{référence}}}$$

- Le contrôle qualité est considéré comme satisfaisant si l'écart relatif est inférieur à 10 %,
- Le degré chlorométrique correspond au volume de dichlore libéré par un litre de solution au cours de cette transformation à 20 °C et 1 013 hPa. Jusqu' à un titre de 5 degrés chlorométriques, les produits chlorés sont des antiseptiques; au-delà, ce sont des désinfectants.

Cercle chromatique

